江明涛的博客
一步步教你在Kubernetes上部署Metrics Server
一步步教你在Kubernetes上部署Metrics Server

一步步教你在Kubernetes上部署Metrics Server

本文将介绍如何在 Kubernetes 集群上部署 Metrics Server,并使用它来监控集群中各种资源的使用情况。

1. 前提条件

  • Kubernetes 集群已经运行,并且 kubectl 工具已经正确配置。
  • Metrics Server 的版本符合 Kubernetes 版本要求。例如,如果 Kubernetes 版本为 1.22,则应使用与之对应的 Metrics Server 版本。

2. 部署 Metrics Server

2.1下载 Metrics Server 的部署文件:

$ wget https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml

2.2编辑下载的部署文件,并添加 --kubelet-insecure-tls 参数,以便 Metrics Server 可以使用不安全的 TLS 连接与 kubelet 通信。

$ vim components.yaml

找到以下部分:

containers:
- name: metrics-server
  image: k8s.gcr.io/metrics-server/metrics-server:v0.5.0
  command:
    - /metrics-server
    - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
    - --kubelet-insecure-tls   # 添加此行

或者直接使用下面的代码:

apiVersion: v1
kind: ServiceAccount
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    k8s-app: metrics-server
    rbac.authorization.k8s.io/aggregate-to-admin: "true"
    rbac.authorization.k8s.io/aggregate-to-edit: "true"
    rbac.authorization.k8s.io/aggregate-to-view: "true"
  name: system:aggregated-metrics-reader
rules:
- apiGroups:
  - metrics.k8s.io
  resources:
  - pods
  - nodes
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    k8s-app: metrics-server
  name: system:metrics-server
rules:
- apiGroups:
  - ""
  resources:
  - nodes/metrics
  verbs:
  - get
- apiGroups:
  - ""
  resources:
  - pods
  - nodes
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server-auth-reader
  namespace: kube-system
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server:system:auth-delegator
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:auth-delegator
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: system:metrics-server
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:metrics-server
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: v1
kind: Service
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
spec:
  ports:
  - name: https
    port: 443
    protocol: TCP
    targetPort: https
  selector:
    k8s-app: metrics-server
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
spec:
  selector:
    matchLabels:
      k8s-app: metrics-server
  strategy:
    rollingUpdate:
      maxUnavailable: 0
  template:
    metadata:
      labels:
        k8s-app: metrics-server
    spec:
      containers:
      - args:
        - --cert-dir=/tmp
        - --secure-port=4443
        - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
        - --kubelet-use-node-status-port
        - --metric-resolution=15s
        - --kubelet-insecure-tls 
        image: bitnami/metrics-server:latest
        imagePullPolicy: IfNotPresent
        livenessProbe:
          failureThreshold: 3
          httpGet:
            path: /livez
            port: https
            scheme: HTTPS
          periodSeconds: 10
        name: metrics-server
        ports:
        - containerPort: 4443
          name: https
          protocol: TCP
        readinessProbe:
          failureThreshold: 3
          httpGet:
            path: /readyz
            port: https
            scheme: HTTPS
          initialDelaySeconds: 20
          periodSeconds: 10
        resources:
          requests:
            cpu: 100m
            memory: 200Mi
        securityContext:
          allowPrivilegeEscalation: false
          readOnlyRootFilesystem: true
          runAsNonRoot: true
          runAsUser: 1000
        volumeMounts:
        - mountPath: /tmp
          name: tmp-dir
      nodeSelector:
        kubernetes.io/os: linux
      priorityClassName: system-cluster-critical
      serviceAccountName: metrics-server
      volumes:
      - emptyDir: {}
        name: tmp-dir
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:
  labels:
    k8s-app: metrics-server
  name: v1beta1.metrics.k8s.io
spec:
  group: metrics.k8s.io
  groupPriorityMinimum: 100
  insecureSkipTLSVerify: true
  service:
    name: metrics-server
    namespace: kube-system
  version: v1beta1
  versionPriority: 100

2.3 部署 Metrics Server:

$ kubectl apply -f components.yaml

2.4 等待 Metrics Server 部署完成:

$ kubectl get deployment metrics-server -n kube-system

输出示例:

NAME             READY   UP-TO-DATE   AVAILABLE   AGE
metrics-server   1/1     1            1           2m

如果 READY 的值为 1/1,则表示 Metrics Server 部署成功。

3. 使用 Metrics Server

现在,Metrics Server 已经在 Kubernetes 集群中部署成功。可以使用 kubectl 命令来获取集群中的度量指标。

3.1 获取节点的 CPU 使用情况:

$ kubectl top node

3.2 获取命名空间中的 Pod 的 CPU 和内存使用情况:

kubectl top pod -n <namespace>

3.3 获取命名空间中的部署的 CPU 和内存使用情况:

$ kubectl top deploy -n <namespace>

总结

在 Kubernetes 集群中部署 Metrics Server 可以实现对集群中各种资源的实时监控和度量指标收集,从而帮助管理员和开发人员更好地管理和优化 Kubernetes 应用程序的性能和可靠性。通过本文所述的步骤,可以轻松部署 Metrics Server 并使用它来监控 Kubernetes 集群中的资源使用情况。

上次更新时间 13 3 月, 2023 at 09:59 上午